Quantum state tomography on spatial modes

with intense light: concept and implementation
(NOTES)

Ermes Toninelli Bienvenu Ndagano Adam Vallés
Bereneice Sephton [saac Nape Antonio Ambrosio
Federico Capasso Miles J. Padgett Andrew Forbes

August 31, 2018

In these notes we describe the software required to automate our DIY roto-flip
stages: an Arduino firmware loaded to the microcontroller of each stage, and an
accompanying LabVIEW automation programme, which allows to sequentially
control the connected stages and the CCD measuring detector. Finally, we also
discuss an optimiser programme, which allows to drastically reduce the time
required to align the optical channel, by iteratively scanning the best position of
the central pixel of the CCD camera, from which the light intensity is measured
in each projection measurement.

1 Firmware for the Arduino microcontroller

At the heart of an Arduino Nano is the ATmega328P microchip, which can be
programmed using the freely available Arduino integrated development environ-
ment (IDE) software. Here is where code can be written that links input signals
from either the analogue or digital physical pins on the board to the output
pins, allowing to process an input (from a linked component, such as a switch,
a proximity sensor, or a message from the serial port, etc.) and to produce a
certain output (to a linked component, such as a light-bulb, a speaker, or a
motor, etc.). In this experiment the input that the microcontrollers of each of
the four roto-flip stages need to process is a message sent from LabVIEW via
the serial port, and the required output is either rotation of the polarisation
optics (i.e. the actuation of the stepper motor), or the pivoting of the stage to
move it out of the optical path (i.e. the actuation of the servo motor). The
flow diagram of the firmware loaded onto the roto-flip stages is shown in Fig.
Accordingly, four states are defined for the operation of the roto-flip stage:

1. Initialisation. This state is comprised of code that is run only once, as
soon as the stage is powered on, allowing the microcontroller to drive the
servo and to start a bidirectional communication session via serial (over
the mini-USB port), as well as to define whether each of the required
physical pins on the board are to be used send (i.e. an output) or receive
(i.e. an input) a voltage signal;

2. Handshake with LabVIEW. This state is used to sync the stage to the
commands received from the LabVIEW automation programme, ensuring
that LabVIEW waits for the stage to have completed its motion before
sending another command, and when the stage receives a command from
LabVIEW via the serial port it parses it and if it is an enquiry about its
readiness it answers back that it is ready, however, if the received message
is different then the stage parses it by looking at the first letter of the
string;

3. Rotation. This state is triggered if the first character of the string received
from LabVIEW is either an m or a p (which indicate a positive or negative
number of steps, i.e. clockwise or counter-clockwise rotation), and the
turns-function drives current to the coils of the stepper motor satisfying
the required number of steps;

4. Pivoting. This state is triggered if the first character of the string received
from LabVIEW is am s, causing the microcontroller to attach the servo
and drive its motor until it has turned by the desired amount (i.e. until
the resistance of the potentiometer fitted inside the servo motor matches
a desired value).

1) Initialisation

1) load servo library
2) begin serial session
3) define pinMode

‘(read string from serial wA

'ureceiving from LabVIE Wy‘

2) Handshake with LabVIEW

print ‘Ready’ to serial

ing = ‘Ready?’
string cady (sending to LabVIEW)

Is first char
of string = ‘s’?

Is first char
of string = ‘p’?

Is first char
of string = ‘m’?

steps = string steps = string steps = string

\ 4 \ 4

turns(-steps) turns(+steps) v
1) servo.attach
turns(+steps)

(actuating the stepper motor)

3) Rotates the stage

l 2) servo.write(steps)

3) delay 1s.
4) servo.detach
(actuating the servo)

4) Pivots the stage

Figure 1: Flow-diagram of the firmware for the Arduino microcontroller. The
firmware programme described by pseudocode in the flow-diagram is used to
control each of the four roto-flip stages used in our experiment. Accordingly,
the operation of a roto-flip stage is defined by four states: 1) initialisation;
2) handshake with LabVIEW; 3) rotation; and 4) pivoting. For additional
convenience, the bold orange and black words match the names of variables and
functions used in the Arduino code.

2 Automation of the experiment via LabVIEW

LabVIEW was chosen as the programming language for the automation of the
experiment. However, any programming language able to communicate with the
serial port and a CCD detector (or a photo-diode) may be used instead. The
LabVIEW automation programme was coded according to the state-machine
software architecture, allowing to separately handle initialisation, rotation, piv-
oting, and synchronisation of the four connected roto-flip mounts, as well as
data acquisition and saving. Specifically, the COM ports corresponding to the
attached microcontrollers of the stages can be selected by the user, as shown in
the initialisation pane in Fig. [

quantumStateTomography.vi - X

Figure 2: Screen-shot of the Initialisation tab of the LabVIEW programme.

Past initialisation, the control programme allows for both manual operation
of the stages (used during alignment and testing and shown in Fig. |3]), and an
auto-mode (shown in Fig. EI, in which the full state-tomography of a particular
input mode is performed and frames from the CCD camera are stored to disks.

In auto-mode the user is required to input the desired number of angular
arrangements of the polarisation optics, in the form of an array of values rep-
resenting the angular positions of each motorised roto-flip stage, as shown in
Fig. f

The other required input from the user is the selection of the central pixel
from a preview video-stream acquired with the CCD camera, by clicking on
the bottom-left button labelled ‘CCD preview’ in the front-panel of the Lab-
VIEW programme. The automated measurement can be started by clicking on
the ‘Automate’ button of the automation tab, visible in Fig. [l An automated
tomography measurement can be observed in video that accompanies this pub-

E quantumStateTomography.vi - X

Figure 3: Screen-shot of the Manual tab of the LabVIEW programme.

H4d quantumsStateTomography.vi - X

Figure 4: Screen-shot of the Automation tab of the LabVIEW programme.

lication, accessible at the following link[I]. Tomography results can be obtained
by processing the acquired data. Once the results have been retrieved it is pos-
sible to set another input state (using the polarisation optics responsible for the
state generation) and run the automated tomography measurement again.

quantumStateTomography.vi _ x

s Mo Mao Moo e e s s

e B 7 0 [/ |/ /A e

Comm ‘o o C o C o o C o C o

s Moo Was Mo a5 e e s

e

Figure 5: Screen-shot of the Angular Values tab of the LabVIEW programme.

The main functions of the LabVIEW automation programme are shown in
Fig. |§I In the initialisation stage (labelled “nit.’ in Fig. E[), the programme
connects to the roto-flip stages, by performing a hand-shake with the in-built
Arduino microcontroller. The next stage of the programme is a user interface
(labelled ‘Control interface’ in Fig. @ through which the roto-flip stages
can be manually controlled and the CCD camera can be operated in preview
mode (labelled ‘CCD Preview’ in Fig. @, from which the pixel-coordinates
for the projection measurements can be chosen. From the user interface it is
also possible to start the automated measurements of either a Bell or a state
tomography experiment. By choosing an automated measurement the system
iterates through user-defined angular arrangements of the polarisation optics,
saving to disk the data acquired from the CCD camera at each step, to allow
further off-line processing. Each angular configuration involves the positioning
(and potentially the pivoting) of all four roto-flip stages. For this reason, during
an automated run of the system, the programme iterates through four states
corresponding to rotation (labelled ‘Roto (1-4)’ in Fig.[6) and four states for
pivoting (labelled ‘Flip 1-4’ in Fig. @ Once the optics has been positioned,
the system acquires and saves to disk a user-defined number of frames from the
CCD camera, via the corresponding state (labelled ‘Measurement’ in Fig. @

A state-machine software architecture allows for more robust code, that can
better deal with user-defined input parameters and interaction. Accordingly,
the programme flow is redirected to the appropriate state, following the input
from the user, as opposed to unidirectionally execute from start to finish. In
this way, it is possible to split the programme and the code based on specific

Init.
(handshake with Arduino)

»la
L]

v Manual operation

Roto (1 to 4)
and Flip (1 to 4)

Control interface

CCD Preview
(choose the central pixel) (input parameters)

Automation

N N

Bell Roto (1 to 4) Tamagraphy Roto (1 to 4)
(64 times) and Flip (1 to 4) (36 times) and Flip (1 to 4)

\ 4 \ 4

Measurement Measurement
(save to disk) (save to disk)

Figure 6: Flow-diagram of the LabVIEW control programme.

functionality (i.e. the states of the state-machine), simplifying potential issues
about hardware resources and synchronisation. For example, the if the roto-flip
stages are being controlled manually by the user (i.e. by the ‘Manual operation’
state) there is no danger of inadvertently starting an automated measurement
-which would also request the use of the roto-flip stages- as the two states are
separate by design: each state that relies either on the CCD or on the roto-
flip stages hardware resources can only be operated once the state machine is
waiting idle at the ‘User interface’ state.

3 Optimiser code with a known input state

Having a spatially resolved detector to measure the transmitted light intensity
for each projection measurement can provide extra flexibility in the alignment
of the optical channel. In the case of a spatially unresolved bucket-detector it
is necessary to scan the detection plane by moving the detector one position
at the time for each full set of measurements. However, if a CCD camera is
available, it is instead possible to acquire a set of frames for a certain align-
ment of the optics and find the best position for the projection measurement

via software, by scanning the choice of the central pixel coordinates from which
the intensity measurements are retrieved. This approach requires the previ-
ous knowledge of the what the input state is, so that an error-matriz and
a subsequent total-error metric may be computed by calculating the absolute
value of the difference between the measured tomography-data matrix and the
theory-matrix of the known input-state. The pixel-coordinates that return the
minimum total-error correspond to the best position of the detector for the
projection measurement. Once this position has been determined by running
the optimiser-programme it is possible to change the input-state to a different
one and run a state-tomography measurement using the optimised central pixel
coordinate, as found by the previous run. It should be mentioned that this
approach is only possible when using intense classical beams of light, which are
detectable with enough precision by a spatially-resolved camera detector.

The optimiser programme requires a number of inputs from the user, as
shown in the left-pane of the graphical-user-interface reported in Fig. [7] Below

H5z minimizeErrarvi — X
File Edit View Project Operate Tools Window Help
Tatal Errar: Pragress:
o I —
E Pixel coardinates: S
= ® ¥ Scalar Bell? Save results? Auto-stop?
= 0.97209
= fos 1ol @ @
=]
1}
E Best data and point:
s Theory matrix
£ Mesured tomography data
pe =1 [
£
A 4
Search attemnpt 2 -.
Contraols:
starting point o -
p y 1 2 3 4 5 o 01 2 3 4 5 6 -0
; 100 :jll 100 Pixel coordinates:
* - e y:
Search range (sqrt{area))
' R STOP
i theory matrix Minimum errar within search range:
:}I'Ihorizontal 1.94474
- Bell curves
‘Type of measurrment: 05-
\;:IFU” tamography [z w]. H '
bgd subtraction extra Plat 1 {pi/4) D 04
\;}I:[u] Plat 2 {pi/2} V .
Data folder: Plot 3 {3/4 pi) A -
name or relative path Plot 4 H - :
Itomograph}fDataC\-—l Plat5 D e 0.1
7
Tempaorary base falder? Plot 6V 0-) : : : .
- Plot7 A ,E 0 2 4 G 8 10 12 14 16
Manual base folder: Bell params
I“u C\Users',...ithBell02\dataBKP\tomography E I 0 il il il]]

Figure 7: Screen-shot of the optimiser LabVIEW programme.

we describe three perhaps not self-explanatory parameters user-defined param-
eters of the optimiser programme:

1.

Theory matriz. This is a user-defined two-dimensional array of values that
represent what the result of the state-tomography measurement should
look like based on a known input-state. This ground-truth will be used
in the optimisation problem of finding the pair of pixel-coordinates that
generate a set of tomography results which differ the least from the known
set (i.e. from the user-defined theory matrix).

. Starting point. This is a pair of pixel coordinates which specify the centre

of a square region-of-interest (ROI), within which tomography results will
be computed for each point. As mentioned, the ability to fine-tune the
position of the detector after the measurement, allows for a quicker set-up
of the experiment, while ensuring that the point chosen for the projection
measurement (i.e. the output pixel-coordinates found by the optimiser
programme) is the best point, within experimental error.

Search range. This specifies the length of the side of the square ROI
within which the best set of coordinates for the projection measurement
is searched. If for example during the alignment of the system, the centroid
of a Gaussian-shaped projection was estimated to be roughly at the centre
of the field of view of the camera, the user can then input a search-range
of a few tens of pixels.

A full run of the optimiser programme produces a number of outputs, as visible
in Fig. [7] Below we describe a few that are particularly useful in interpreting
the results:

1.

‘Total Error’ chart. This chart is updated point-by-point for every tested
pixel of the user-defined ROI, as the programme computes the absolute
value of the difference between the theory matrix and the matrix of tomog-
raphy data, as produced by the current choice of pixel. For a well-aligned
system, the total error can be < 1.

‘Best data and point’ cluster. This is the main output of the optimiser
programme, containing the pixel-coordinates and a representation of the
associated tomography data that best resembles the theory matrix. The
minimum error is also provided (which is equal to the absolute value of
the difference between the theory matrix and the measured tomography
data for a certain choice of pixel coordinates). Using this last metric, it
is possible to make adjustments to the optical setup and monitoring in an
informed manner how this changes affect the fidelity of the results.

‘Theory matriz’ intensity graph. This intensity graph simply displays back
to the user the theory matrix.

‘Bell Curves’ graph and ‘Bell params’ array. If the programme is used to
analyse the data of a Bell measurement (as selectable in the ‘Controls:’

input cluster and in the top-right boolean switch in the case of a Bell
measurement for a scalar input-state) the programme will produce a set
of Bell curves and associated Bell parameters.

The flow-chart of our optimiser programme is shown in Fig. [8] In the first and
second highlighted blocks the user-defined input parameters determine set-up
the optimisation run. The user selects whether the data to be retrieved from
disk represents a tomography or a Bell measurement and the frames are loaded
to RAM for fast iterative processing. The third block of the diagram represents
a for-loop, according to which data is analysed for every pixel within the user-
defined ROI. The fourth block represents the extraction of the pixel intensities
from the current search pixel-coordinates, which are then used to compute the
total error metric. Finally, once the programme has computed the experimental
tomography data for every point within the search range, the optimal pixel
coordinates that correspond to the best tomography data results are returned
to the user.

10

2) Load data

3) Iterate over |
search range |
®

|
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
\

5) Optimal pixel coordinates [

1) Input parameters

1) Theory matrix;
2) Starting central pixel;
3) Search range.

Tomography

Load frames
from disk to RAM

Iterate over
captured

frames
-
\

[

Produce
tomography data

\ 4

Gotal error = abs(theory matrix — tomography dataD

Select minimum from
total error values

)

(0]

utput pixel coordinates
of minimum total error

Figure 8: Flow-diagram of the optimiser programme.

11

4 Conclusions

In these notes we have provided information about the custom software that
is used to control the roto-flip stages, allowing to perform a state tomography
measurement and analyse the corresponding data. All of the shared resources
can be found at the following link [I].

References

[1] Supplemental material to this publication including the video of the
system in action, 3D-designs of the roto-flip stages, the Arduino
firmware, and the LabVIEW programmes, can be found at the
following links: http://dx.doi.org/10.5525 /gla.researchdata.559 and
https://github.com/ErmesT/Quantum-state-tomography-on-spatial-
modes.

12

	Firmware for the Arduino microcontroller
	Automation of the experiment via LabVIEW
	Optimiser code with a known input state
	Conclusions

